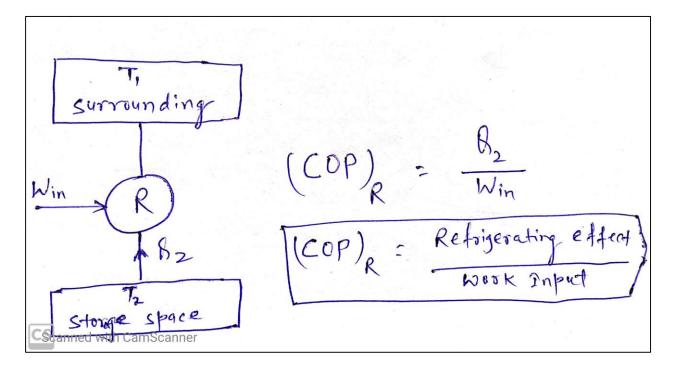
REFRIGERATION AND AIR CONDITIONING


Refrigeration:

The process of decreasing the temperature of a body below that of the surroundings is called refrigeration. In order to maintain lower temperature continuously refrigeration system must run on a cycle.

Refrigerant: Refrigerant is a substance used for decreasing lower temperature of an object.

Example: Ammonia, water, air, R-11, R-12, R-134.

Refrigeration effect: It is equal to the heat given out by cold bodies, i.e. the heat received by the refrigerant in the evaporator. It is the desired effect of a refrigerator.

Significance of coefficient of performance (COP): Coefficient of performance (COP) represents running cost of system. For a given refrigeration capacity greater the COP lesser is the work input and hence lower is the running cost.

Unit of refrigeration: It is the amount of heat that is to be extracted from one tonne of water at 0^0 C in order to convert it into ice at 0^0 C in twenty four hours.

Tonne of refrigeration represents heat transfer rate.

Ideal refrigeration cycle:

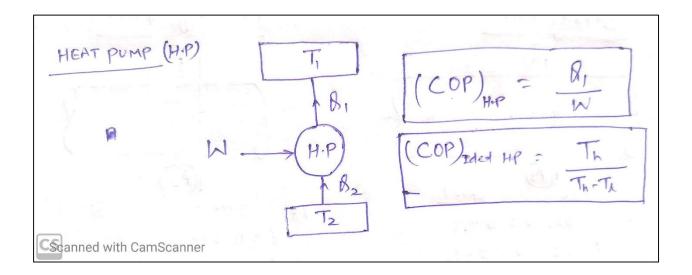
Reversed Carnot cycle is an ideal refrigeration cycle.

This is valid for reversible cycle only.

Refrigeration Capacity (RC):

 $m^0 = mass$ flow rate of refrigerant.

$$\mathbf{RC} = \mathbf{m}^0 \times \mathbf{RE}$$


Where RE = Refrigeration effect

Power Input	$\mathbf{P}_{i} = \mathbf{m}^{0} \times \mathbf{W}_{in}$	
Coefficient of performance	$COP = \frac{RE}{W_{in}}$	
	COD RE×m ⁰	

$$COP = \frac{RE \times m^0}{W_{in} \times m^0} = \frac{RC}{P_{in}}$$

 $COP = \frac{Refrigeration \ Capacity}{Power \ Input}$

Coefficient of performance (COP) of Heat Pump:

Relation between (COP)Refrigeration and (COP)H.P:

$$(COP)_{H.P} = 1 + (COP)_{Ref}$$

Prepared by:

Santosh Kumar Singh Assistant Professor Department of Mechanical Engineering Monad University, Hapur