Transformation

Transformation is the process by which we can change the shape, Size, position and direction of any object.
Two way of Transformation:

* Geometric Transformation
* Co-ordinate Transformation

Geometric Transformation: Object is transformed but coordinate is not transformed.
There are five types also:

* Translation
* Scaling
* Rotation
* Mirror reflection

Translation

An object is displaced a given distance \& direction from its original position.

from this figure, you can write that New Point : $\mathrm{P}^{\prime}\left(\mathrm{M}^{\prime}, \mathrm{N}^{\prime}\right)$ Original Point: $P(M, N)$ Where $M^{\prime}=M+T_{M}, N^{\prime}=N+T_{N}$ We can write it as - $\mathbf{P}^{\prime}=\mathbf{P}+\mathbf{T}$	

Example :In 2-D previous point are required as new point are $(12,6)$ and translation vector is $3 \mathrm{i}+4 \mathrm{j}$.
Answer:

$$
\begin{aligned}
& \text { New Object : }(12,6) \\
& \text { Changes: }(3,4) \\
& \text { i.e. } M^{\prime}==12, N^{\prime}=6, T_{M}=3, T_{N}=4 \\
& M^{\prime}=M+T_{M}, M=9 \\
& N^{\prime}=N+T_{N}, N=2
\end{aligned}
$$

Scaling

Process of changing the size.
Process of expending or composing of an object.

The original coordinates: M, N
The scaling factors are $\left(\mathrm{S}_{\mathrm{M}}, \mathrm{S}_{\mathrm{N}}\right)$
The produced coordinates are $\mathrm{M}^{\prime}, \mathrm{N}^{\prime}$.
This can be mathematically represented as -

$$
M^{\prime}=M . S_{M} \text { and } N^{\prime}=N . S_{N}
$$

Example : Given a square object with coordinate points $A(0,4)$, $B(4,4), C(4,0), D(0,0)$. Apply the scaling parameter 3 towards M axis and 4 towards N axis and obtain the new coordinates of the object.

Answer-

Given-

- Original coordinates of the square $=A(0,4), B(4,4), C(4,0)$, $D(0,0)$
- Scaling factor along M axis $=3$
- Scaling factor along N axis $=4$

For Coordinates A(0, 4)

Applying the scaling equations, we have-
$\mathbf{M '}^{\prime}=\mathbf{M} . \mathbf{S}_{\mathbf{M}}=0 \times 3=0$
$\mathbf{N}^{\prime}=\mathbf{N} . \mathbf{S}_{\mathbf{N}}=4 \times 4=16$
Thus, New coordinates of corner A after scaling $=(0,16)$.

For Coordinates A(4, 4)

Applying the scaling equations, we have-
$\mathbf{M}^{\prime}=\mathbf{M} . \mathbf{S}_{\mathbf{M}}=4 \times 3=12$
$\mathbf{N}^{\prime}=\mathbf{N} . \mathbf{S}_{\mathbf{N}}=4 \times 4=16$
Thus, New coordinates of corner A after scaling $=(12,16)$.

For Coordinates A(4, 0)

Applying the scaling equations, we have-
$\mathbf{M}^{\prime}=\mathbf{M} . \mathbf{S}_{\mathbf{M}}=4 \times 3=12$
$\mathbf{N}^{\prime}=\mathbf{N} . \mathbf{S}_{\mathbf{N}}=4 \times 0=0$
Thus, New coordinates of corner A after scaling $=(12,0)$.

For Coordinates A(0,0)

Applying the scaling equations, we have-

$$
\mathbf{M}^{\prime}=\mathbf{M} . \mathbf{S}_{\mathbf{M}}=0 \mathrm{M} 3=0
$$

$\mathbf{N}^{\prime}=\mathbf{N} . \mathbf{S}_{\mathbf{N}}=0 \times 4=0$
Thus, New coordinates of corner A after scaling = (0, 0).
Thus, New coordinates of the square after scaling $=\mathbf{A}(0,16)$,
$B(12,16), C(12,0), D(0,0)$.

Rotation

Object is rotated \varnothing about origin \varnothing positive for counterclockwise otherwise negative.

The original coordinate $P(M, N)$ as$\mathrm{M}=\mathrm{rcos} \phi$
$N=r \sin \phi$
New co-ordinate point $\mathrm{P}^{\prime}\left(\mathrm{M}^{\prime}, \mathrm{N}^{\prime}\right)$ as$M^{\prime}=r \cos (\phi+\theta)=r \cos \phi \cos \theta-r \sin \phi \sin \theta$
$N^{\prime}=r \sin (\phi+\theta)=r \cos \phi \sin \theta+r \sin \phi \cos \theta$
Calculate equation 3 and 4 , we will get
$\mathrm{M}^{\prime}=\mathrm{M} \cos \theta-\mathrm{N} \sin \theta$
$N^{\prime}=M \sin \theta+N \cos \theta$

Mirror Reflection

$>$ In this reflection the size of the object does not change.
The mirror image can be either about M -axis or N -axis.

Composite Transformation

$>$ Performing more than one transformation can be combined.
$>$ This process of combining is called concatenation.
$>$ Example :Suppose we want to perform rotation about an arbitrary point, then we can perform it by the sequence of three transformations

1. Translation
2. Rotation
3. Reverse Translation

Example: the sequence of three transformations
(a) Original position of object.

(b) Object Translate to origin.

(c) Object rotation to origin.

(d) Object retranslated to original position.

