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UNIT-I 

 

Reimann-Stieltjes integral 
 
 
Introduction 

This short note gives an introduction to the Riemann-Stieltjes integral on R 

and Rn. Some natural and important applications in probability theory are 

discussed. The reason for discussing the Riemann-Stieltjes integral instead of the 

more general Lebesgue and Lebesgue-Stieltjes integrals are that most applications 

in elementary probability theory are satisfactorily covered by the Riemann-Stieltjes 

integral. In particular there is no need for invoking the standard machinery of 

monotone convergence and dominated convergence that hold for the Lebesgue 

integrals but typically do not for the Riemann integrals. 

The reason for introducing Stieltjes integrals is to get a more unified 

approach to the theory of random variables, in particular for the expectation 

operator, as opposed to treating discrete and continuous random variables 

separately. Also it makes it possible to treat mixtures of discrete and continuous 

random variables: It is for instance not possible to show that the expectation of the 

sum of a discrete and a continuous r.v. is the sum of the expectations, without 

using Stieltjes integrals. There are also many advantages in inference theory, for 

instance in the discussion of plug-in estimators.  

 

The Riemann-Stieltjes integral on R 

 

The Reimann integral corresponds to making no transformation of the x-axis in the 

Reimann sum 



 

Sometimes one would like to make such a transformation. 

Thus let F be a monotone real-valued transformation of I is a subset of R, so 

 

Now assume that h is a real-valued step-function on the interval I, so that we can 

write 

 

for some constants c1, ……, cn, and with  

 

a partition, and with Ij intervals. Then we define the Reimann-Stieltjes integral of h 

as 

 

Note that 

  

and that if 

  

and that then 

  

 



We can next make the following definition: 

Definition 1: Let F be an increasing function defined on the interval I, and let g be 

a function defined on I. Then g is called Riemann-Stieltjes integrable, w.r.t. F, if 

for every   > 0, there are step-functions h1; h2 such that h1 ≤ g ≤ h2 and 

  

If g is Riemann-Stieltjes integrable, we define the Riemann-Stieltjes integral of g 

as 

  

Theorem 1: If g is continuous and bounded, and F is increasing and bounded on 

the interval I, then g is Riemann-Stieltjes integrable on I. 

Proof. That F is increasing and bounded on I = [a, b] means that 

  

(i): Assume first that I is finite. Thus since g is continuous on the compact interval 

I it is uniformly continuous so there are  ,  such that 

 

for  ,  not depending on x, y. Next let be an arbitrary finite 

partition of I, with Ii intervals that satisfy  (this is possible to obtain since F is 

bounded), and let 

  

and note that by the uniform continuity of g. The step functions 



  

satisfy  Furthermore 

  

so that 

  

where the last equality follows since the sets F(Ii) are disjoint (by the monotonicity 

of F together with the fact that Ii are disjoint). Since for every   > 0 we can get h1, 

h2 step functions so that this holds, we have shown that g is Riemann-Stieltjes 

integrable.  

 

(ii): Next, assume I not finite. Then since F is increasing it is also piecewise 

continuous. Therefore for every ~  > 0 there is finite II 
~

 such that 

  

Also, since g is absolutely bounded, 

  

so that  

 

Thus we can use the construction under (i) on I
~

, and concatenate to get the step 

functions 



  

bounding g on all of I and such that 

  

Since  ,~  are arbitrary we have shown that g is Riemann-Stieltjes integrable.  

The Riemann-Stieltjes integral can be obtained as a limit of Riemann-Stieltjes 

sums. We prove the statements for continuous functions g: 

 

Theorem 2. Assume g is continuous and F increasing on the interval I. Then 

  

where are partitions of I, and   are 

arbitrary points in  

Proof. Use a similar construction of h1; h2 as in the proof of Theorem 1. Thus we 

have 

  

and 

  

Since g is integrable, we can let  and make the partition finer 

and finer as  

so that the difference between the right hand side and the left hand side (which is 

smaller than ) goes to zero, which shows the result. 

 



The Integral 

 

The area of a circle: Egyptian knew how to calculate before 1650 B. C. 

The general method for calculating the area: Archimedes (287 B. C.~212 B. C.) 

proposed the method of exhaustion.  

Antiderivatives 

Definition 1:  

F  is an antiderivative of f  if    xfxF '
. 

 

Example 1: 

    cxxFxxf  32   3 , where c is a constant. 

                                                                   ◆ 

Theorem 1:  

If F  and G  are two differentiable functions that have the same derivative in 

 ba, , i.e.,    xGxF ''  . Then,     cxGxF  , where c is any constant. 

Definition 2:  

Let F  be an antiderivative for f , then the indefinite integral of f  is written 

    cxFdxxf  , where f  is referred to as the integrand, x  is referred to 

as the variable of integration and c is any constant. If f  has an antiderivative, 

then f  is said to be integrable.  

 

 



Theorem 2:  
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Theorem 3:  

1.      dxxfkdxxkf . 

2.           dxxgdxxfdxxgxf . 

 

[justifications:] 

1. Let   .Fdxxf   Since  

 
 xkf

dx

kdF

dx

kFd
 ,  

     dxxkfdxxfkkF  

by theorem 1.  

2. Let   Fdxxf   and   Gdxxg  . Since  

 
   xgxf

dx

dG

dx

dF

dx

GFd



,  

          dxxgxfdxxgdxxfGF  

by theorem 1.  



Theorem 4:  

If f  is continuous, then f  is integrable.  

 

Properties of the integral 

The Definite Integral 

Motivating Example : 

x
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x
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In the above figure, the area, A, between   2xxf   over  1,0  and the x-axis 

can be approximated by the rectangles in dashed lines or dotted lines. The area of 

the rectangles in dotted lines is  
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while the area of the rectangles in dashed lines is  
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Thus,  

47.0
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7
22.0  A . 

In the above approximation, the interval  1,0  is divided into subintervals of 

equal length, 
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If the interval  1,0  is divided into more subintervals of equal lengths, for 

example,  
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then the area A can be approximated by similar rectangles in dashed lines or 

dotted lines. The area of the rectangles in dotted lines is  
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while the area of the rectangles in dashed lines is  
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Thus,  
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35
27.0  A . 

A more accurate approximation can be obtained. In general, the interval  1,0  is 

divided into subintervals with equal length n
1

.  
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The area of the rectangles in dotted lines is  

 

   
3

1

1

2

3

3

222

222

min

6

121
       

1
       

121
       

111211

n

nnn

k
n

n

n

nn

n

nnnn
S

n

k
















 





























 

 

while the area of the rectangles in dashed lines is  
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Thus,  
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As n tends to infinity, by squeezing theorem,  
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Note: 

In the above approximations, the same result can be obtained as the heights of 

the rectangles are replaced by  ixf , where  
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That is, rather than using 
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, the values of the function 

evaluating at the inner points of the subintervals are used as the heights of the 

rectangles. For example, as using the middle points of these subintervals as the 

heights,  

 

 
 

                                    

12

14
                                    

4

2

4

1231
                                    

1

2

121

2

3 1

2

1
area edapproximat  

,,,2 ,1 ,
2

12

2

11
     

2

2

3

1

1

2
12

1

2

3

222

222

n

n

n

kk

n

n

nn

n

nnnn

ni
n

i

nn

i
x

n

k

n

k

i


















 













































 

Thus, as n tends to infinity, the approximated area tends to 3
1
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Definition 3 (Riemann sum and regular partition):  

Let  

bxxxxxa nn  1210  .  

Let nixxx iii  ,,2 ,1 ,1   , The Riemann sum is  

   iiii

n

i

i xxxxxf , , 1

1







  . 

As  



n

ab
xi


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the partition is regular. 

 

Definition 4 (the definite integral):  

Let f  be defined on  ba, . Then,  
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whenever the limit exists. 

Note:  
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Theorem 5:  

f  is continuous on  ba, , then f  is integrable on  ba, . That is,  

 
b

a

dxxf  exists. 

Note:  

f  is continuous, then 
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Theorem 6:  

Let c  be a constant. Then, 

 abccdx
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Definition 5:  

For any real number a,  

  .0
a

a

dxxf  

 

 



Definition 6:  

If ba   and  
b

a

dxxf  exists, then 

    

b

a

a

b

dxxfdxxf . 

 

Example 2: 

3

1
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2 
  dxxdxx . 

Definition 7 (area):  

The area bounded by the function  xfy  , is denoted by 
b

aA  and is defined by 

the formula 

  .
a

a

b

a dxxfA  

 

a b 

 xf  

-

 xf  



 

Properties of Definite Integral: 

Theorem 7:  

If f  is continuous on  ba,  and if bca  , then f  is integrable on  ca,  

and on  bc, , and  

      . 

b

c

c

a

a

b

dxxfdxxfdxxf  

Theorem 8:  

f  is integrable on  ba,  and if k  is any constant, then kf  is integrable on 

 ba, , and  

    . 

b

a

b

a

dxxfkdxxkf  

Theorem 9:  

If the function f  and g  are both integrable on  ba, , then gf   is 

integrable on  ba, , and  

         . 
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Theorem 10:  

If f  is integrable on  ba,  and 0f  there, then  

  0
b

a

dxxf . 



Theorem 11:  

If the function f  and g  are both integrable on  ba,  and    xgxf  , then  

    

b

a

b

a

dxxgdxxf . 

Theorem 12:  

If f  is integrable on  ba,  and Mfm  , then  

     abMdxxfabm
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 [justifications of theorem 7:] 
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[justifications of theorem 8:] 
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[justifications of theorem 9:] 

Since  f  and g  are both integrable, then  
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





































b

a

i

k

i

ii
x

i

n

i

ii

n

i

i
x

i

n

i

i
x

i

n

i

i
x

b

a

b

a

dxxgxf

xxgxf

xxgxxf

xxgxxfdxxgdxxf

i

i

ii

                              

                        lim                               

lim                              

limlim

1
0max

11
0max

1
0max

1
0max

 

 

[justifications of theorem 10:] 

Since   

    , ,0    0 ,0
1

ii

n

i

ii xxxfxxf  




 

    .0lim
1

0max
 






i

n

i

i
x

b

a

xxfdxxf
i

 

 

[justifications of theorem 11:] 

Since       0 xfxgxh  and  

          xfxgxfxgxh  1  

is integrable (by theorems 8 and 9), then  

   .10 by theorem 0
b

a

dxxh  



Thus, 

            

     

   











b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

dxxfdxxg

dxxfdxxg

dxxfdxxgdxxfxgdxxh

                   

1              
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8 by theorem

9 by theorem

 

[justifications of theorem 12:] 

Let   Mxg   and thus  xg  is integrable. Then,    xgxf  . By theorems 11 

and 6,  

     abMMdxdxxgdxxf

b

a

b

a

b

a

  . 

Similarly,  

   abmmdxdxxf

b

a

b

a

  . 

4.3 The Fundamental Theorem of Calculus 

 

Theorem 13 (Rolle’s theorem):  

Let f  be continuous on  ba,  and differentiable on  ba, . If 

    0 bfaf , then there exists at least one number c in  ba,  at which 

  0' cf .  

 

 



[Intuitions:] 

(1) 

x

f(
x

)

a b

0

 

(2) 

x

f(
x

)

a b

0

 

 



 

(3) 

x

f(
x

)

a b

0

 

 

If (3) (figure),   0' xf  in  ba, . Thus,    baccf , ,0'  . If  

(1) or (2), suppose f  takes on some positive values in  ba, . Intuitive, there is a 

number 1x  in  ba, , such that   01  Mxf , where M is the maximum value 

of  xf  in  ba, . Then,   01

' xf . 

 

 



Theorem 14 (mean-value theorem):  

Let f  be continuous on  ba,  and differentiable on  ba, . If 

    0 bfaf , then there exists at least one number c in  ba,  at which  

      abcfafbf  '
. 

 

[justifications of theorem 14:] 

 
   

   afax
ab

afbf
xh 












 . 

Then, let      xhxfxg  . Since  

                0 ,0  bfbfbhbfbgahafag , 

by Rolle’s theorem, there is a number c such that  

     
   

 
   

.                

0   0

'

'''

ab

afbf
cf

ab

afbf
cfcgcg




















 

                                                          

The fundamental theorem of calculus is the core of calculus. The following 

example provides the intuition of the theorem.  

 

 

 

 



Motivating Example (continue): 

The area, A, bounded by   2xxf   over  1,0  is 3
1 . Note that the 

antiderivative of f  is   cxxF 
3

3

 and    xfxF '
. As the interval  1,0  

is divided into subintervals with equal length n
1

, the approximated area is  

        






 
 

 n

i

n

i
x

n
x

n
x

n
xdxxf in ,

1
 ,

111 22

2

2

1

1

0

 . 

By mean-value theorem,  

 

n
c

n

i

n

i
cF

n

i
F

n

i
F

i

i

1
                        

11

2

'










 








 










 

where 






 


n

i

n

i
ci ,

1
. As 



ix  is chosen such that ii cx 
, the approximated 

area is  



 

     

     

   

3

1

3

0

3

1
01

1211201

,
111

  

,
111

22

2

2

1

22

2

2

1

1

0




















 

























 








 
































































FF

n

n
F

n

n
F

n

n
F

n

n
F

n
F

n
F

n
F

n
F

n
c

n
c

n
c

n
x

n
x

n
x

dxxf

n

n







 

Thus, it is nature to ask if in general for a function f  with antiderivative F  

     .aFbFdxxf

b

a

  

                                         

Theorem 15 (fundamental theorem of calculus):  

Let f  be continuous on  ba, . If F  is any antiderivative of f  on  ba, , then 

     .aFbFdxxf

b

a

  

 

[justifications of theorem 15:] 

Since f  be continuous on  ba, , then  
b

a

dxxf  exists. Let  

bxxxxxa nn  1210  . 



Then, by mean value theorem,  

       

                   

        

 

  i

n

i

i

i

n

i

i

nnn

nnnn

n

xxf

xxF

xxxFxxxFxxxF

xFxFxFxFxFxFxFxF

xFxFaFbF





























1

1

'

1

'

122

'

011

'

1211201

0

 



 

where 1 iii xxx  and  iii xxx ,1

 . Thus,  

            dxxfxxfaFbFaFbF

b

a

i

n

i

i
xx ii

 














1

0max0max
limlim . 

 

 

Example 3: 

Calculate 
3

1

3dxx . 

[solutions:] 

Since the antiderivative of 
3x  is   c

x
xF 

4

4

, by the fundamental theorem of 

calculus,  

   
4

81

4

1

4

3
13

443

1

3 
















 ccFFdxx . 

                                                          



Note:  

For convenience, the notation,  

     aFbFxF
b

a
 ,  

is used.  

 

Theorem 16 (second fundamental theorem of calculus):  

If f  be continuous on  ba, , then 

    ,
x

a

dttfxG  

is continuous, differentiable on  ba, , and for every x in  ba, ,  

   .' xfxG   

 

[Intuition of theorem 16:] 

Suppose  xf  is positive. The area bounded by  xf  over  xa,  is  

   xGdxxfA

x

a

x

a   . 

Then, 

 
   

x

A

x

AA

x

xGxxG
xG

xx

x

x

x

a

xx

a

xx






















0

00

'

lim          

limlim

 



 

In the above figure,  

   

   xf
x

A
xxf

xxfAxxxf

xx

x

xx

x












  

      

 

By squeezing theorem, since  

     xfxfxxf
x 00x

limlim      


 , 

   xf
x

A
xG

xx

x

x







 0

' lim . 

4.4 Integration by Substitution and Differentials 

Theorem 17:  

        ,' cxgFdxxgxgf   

where F  is an antiderivative of f  and c is some constant.  

 

[justifications of theorem 17:] 

  
         .''' xgxgfxgxgF

dx

xgdF
  

 

Example 4: 

Calculate    xdxx 21
22

. 

 



[solutions:] 

Let  

            22
3

'22 1,
3

 ,2  1 ,  xxgfxxFxxgxxgxxf . 

By theorem 17,  

         
 

c
x

cxgFdxxgxgfxdxx 


  3

1
21

32
'22

. 

                                                         

Note:  

For the purpose of computations, the following procedure can be used to obtain 

the integral : 

   
 

   

            cxgFcuFduufdxxgxgf

dxxgxdgdu
dx

xdg
xgxgu






'

''

 

   ,

 

Example 4 (continue): 

Calculate    xdxx 21
22

. 

[solutions:] 

Let  

 
 

     dxxgxdgduxxg
dx

xdg
xxgu ''2   2  1  . 



             

 
c

x
c

u
duu

duufxdgxgfdxxgxgfxdxx












3

1

3
                          

21

323
2

'22

 

                                                  

Theorem 18:  

If the function  xgu   has a continuous derivative on  ba, , and f  is 

continuous on the range of  xg , 

      
 

 

.'

 

bg

ag

b

a

duufdxxgxgf
 

[Intuition of theorem 18:] 

 

 

x0=a b 

    xgxgf   

x1 
△x 

    xgxgf   

    
b

a

dxxgxgf '  



 

 

Let  

bxxxxxa nn  1210   

and  

         bgxxgxxgxxgxxag nnn  









1122110  . 

Note that  

   

   
   

     

  iii

iiii

ii

i

ii

iiiiiiii

xxgx

xxgxgxg

xgxg
x

xgxg

xgxgxxxxxx






























'

'

1

'

1

'1

111

                              

                              

                              

0   0

 

Then, 

x0
* 

  xgf  

 xg ' △xi 

=△xi
* 

  xgf  

 
 

 


bg

ag

duuf  

g  a  g  b  
x1

* 



    

              

        

     

 

 
 

 

























bg

ag

x

x

nn

nn

nnn

b

a

duuf

duuf

xxfxxfxxf

xxgfxxgfxxgf

xxgxgfxxgxgfxxgxgf

dxxgxgf

n

0

2211

2211

'

22

'

211

'

1

'   







 

Example 5: 

Calculate   

1

0

22 21 xdxx . 

 

[solutions:] 

Let  

      .
3

   1 ,
3

22 xxFxxguxxf   

By theorem 18,  

        
 

 

3

7
                          

3

1

3

2
                          

3
21

33

2

1

32

1

2

1

0

1

0

'

1

0

22





 
u

duuduufdxxgxgfxdxx

g

g

 



 

Note:  

For the purpose of computations, the following procedure can be used to obtain 

the definite integral : 

1. The indefinite integral was computed first,  

   
 

   

         cuFduufdxxgxgf

dxxgxdgdu
dx

xdg
xgxgu






'

''

 

   ,

 

2. Evaluate  
 

       agFbgFuF
bg

ag
 . 

 

Example 5 (continue): 

 

1. The indefinite integral is  

     1 , 22  xxguxxf  

  c
u

xdxx  3
21

3
22

. 

2.  

 

 

3

7

2

1

3

2

333

33
2

1

3
11

10

3
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