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UNIT-I

Reimann-Stieltjes integral

Introduction

This short note gives an introduction to the Riemann-Stieltjes integral on R
and Rn. Some natural and important applications in probability theory are
discussed. The reason for discussing the Riemann-Stieltjes integral instead of the
more general Lebesgue and Lebesgue-Stieltjes integrals are that most applications
in elementary probability theory are satisfactorily covered by the Riemann-Stieltjes
integral. In particular there is no need for invoking the standard machinery of
monotone convergence and dominated convergence that hold for the Lebesgue
integrals but typically do not for the Riemann integrals.

The reason for introducing Stieltjes integrals is to get a more unified
approach to the theory of random variables, in particular for the expectation
operator, as opposed to treating discrete and continuous random variables
separately. Also it makes it possible to treat mixtures of discrete and continuous
random variables: It is for instance not possible to show that the expectation of the
sum of a discrete and a continuous r.v. is the sum of the expectations, without
using Stieltjes integrals. There are also many advantages in inference theory, for

instance in the discussion of plug-in estimators.

The Riemann-Stieltjes integral on R

The Reimann integral corresponds to making no transformation of the x-axis in the

Reimann sum



T

Z g(&) (i1 — x7).

1=1

Sometimes one would like to make such a transformation.

Thus let F be a monotone real-valued transformation of | is a subset of R, so
F:1— F(I).

Now assume that h is a real-valued step-function on the interval I, so that we can

write
h(t) = Z c;1{t € I;},
i=1
for some constants ¢y, ...... , Cn, and with
[ =U 1
a partition, and with Ij intervals. Then we define the Reimann-Stieltjes integral of h
as
/h(u} AF(w) = Y al|F(I).
: i=1
Note that
[F(I)| = F(max(I;)) — F (min(1;)),
and that if

I_E- — ((!_E'_ bi) then ‘F(L” = F(bz) - F(h’i)
and that then

T

[I h(u) dF(u) = Z(‘E(F(bi) — Fl(a;)).

i=1



We can next make the following definition:
Definition 1: Let F be an increasing function defined on the interval I, and let g be
a function defined on I. Then g is called Riemann-Stieltjes integrable, w.r.t. F, if

for every € > 0, there are step-functions hl; h2 such that hl < g <h2 and

/ ho(u) dF (u) — / hi(u)dF(u) < e
JI JI

If g is Riemann-Stieltjes integrable, we define the Riemann-Stieltjes integral of g

as

/‘r_;r(-u.]rfF(u) = sup{ / h(uw)dF(u) : h < g.h step function.}
JI JI

Theorem 1: If g is continuous and bounded, and F is increasing and bounded on
the interval I, then g is Riemann-Stieltjes integrable on I.

Proof. That F is increasing and bounded on | = [a, b] means that

—o0 < c:1= F(a) = il}fF <supF = F(b) =: C < oc.
I

(i): Assume first that | is finite. Thus since g is continuous on the compact interval

I it is uniformly continuous so there are e, §such that
[z —yl<d = |gly) —g@)| <e

U;I':]_If — I
for e, osnot |F(1;))<s depending on X, y. Next let be an arbitrary finite
partition of I, with [; intervals that satisfy (this is possible to obtain since F is

bounded), and let

;= 1nf g(t).
m; t]r\in g(t)
M; = supyg(t).

tel;

and M; —mi < ¢, note that by the uniform continuity of g. The step functions



hi(t) = Y mil{te L},
i=1
hao(t) = Y M1{t € I},
i=1
hi < g < ha. satisfy Furthermore
/M(u) dF (u) =Y " my|F(I;)| < ZMJF(L—M: /hg(-u) dF (u).
JI i=1 i=1 T

so that

/Ihg(u)r'fF(u) - /Ihl(-u}dF(u) < (M —m)|F(L)] < €Y |F(L)| = el F (D),

- . i=1 i=1
where the last equality follows since the sets F(l;) are disjoint (by the monotonicity
of F together with the fact that |; are disjoint). Since for every € > 0 we can get hl,
h2 step functions so that this holds, we have shown that g is Riemann-Stieltjes

integrable.

(if): Next, assume | not finite. Then since F is increasing it is also piecewise

continuous. Therefore for every € > 0 there is finite 1 1 such that

max(sup ' —sup F.intf ' —inf F) < €
I i I I

Also, since g is absolutely bounded,

sup [g] < G
NI

so that
—G<g< G’onf\f.

G dF(u) — / —GdF(u) < 2GEe.
Ini Ini

Thus we can use the construction under (i) on I, and concatenate to get the step

functions



hi = conc(—G, hy. —G), hy = conc(G. ha, é)

bounding g on all of I and such that

./If:szF(u) _./I hidF(u) = ./f}FQ(EI'J{IF(I:)_,/fhl(”)‘w(”)
+./ vG‘fIF(u)—_/ —GdF(u)

N AV
< e|F(I)| +2Ge.
Since e, are arbitrary we have shown that g is Riemann-Stieltjes integrable.
The Riemann-Stieltjes integral can be obtained as a limit of Riemann-Stieltjes

sums. We prove the statements for continuous functions g:

Theorem 2. Assume g is continuous and F increasing on the interval 1. Then

L

/ g(z)dFz = lim S (&) (F (1) — F(xio1)),
JI maxy<icn [2i—2i—1|—=057

=1

minl = o <1 < ... <zp <maxl \whare are partitions of I, and & are

arbitrary points in [%i—1: %i).
Proof. Use a similar construction of h1; h2 as in the proof of Theorem 1. Thus we
have

hi < g < hs.

and

n

[ ha(u) dF () < S g(6) (F () — Flwiy)) < [ ho(u) dFu.
J1 P J1

Since g is integrable, we €10, can let and make the partition " = °°: finer
and finer as
so that the difference between the right hand side and the left hand side (which is

smaller than <) goes to zero, which shows the result.



The Integral

The area of a circle: Egyptian knew how to calculate before 1650 B. C.

The general method for calculating the area: Archimedes (287 B. C.~212 B. C.)
proposed the method of exhaustion.

Antiderivatives

Definition 1:

F is an antiderivative of T if FI(X)Z f(X).

Example 1:

f (X) =3x° = F(X) =x*+cC ,where cis a constant.
L 2
Theorem 1:

If F and G are two differentiable functions that have the same derivative in

(a, b), ie., F'(X) = GI(X). Then, F(X)— G(X) = C, where c is any constant.
Definition 2:

Let F be an antiderivative for f , then the indefinite integral of f is written

_[ f(X)dX = F(X)+ C, where f is referred to as the integrand, X is referred to

as the variable of integration and c is any constant. If f has an antiderivative,

then f is said to be integrable.



Theorem 2:

r+1

jkdx=kx+c,jx“dx= X +C,

r+1
I sin (x)dx = —cos(x)+c, jcos(x)dx =sin(x)+c

Theorem 3:

1. [ KF()dx =k f(x)dx

2“ (x)+ g(x)Jdx = I dx+Ig

[justifications:]

1. Let I dX = F. Since
d(kF) _kdF _ F (%)
dx dx ’

KF = k| f (x)dx = [ Kf (x)dx
by theorem 1.

2. Let I f(X)dX =F and Ig(x)dx =G . since

d(F+G) dF dG _
ax x| dx fx)+g(x)

F+G= _[ dx+Ig dx—_[[f +g(x)ldx

by theorem 1.



Theorem 4:

if fis continuous, then fis integrable.

Properties of the integral

The Definite Integral

‘Motivating Example :‘

X2

9/16|

f(x)

4/186

1/16
0-

T
3/4

In the above figure, the area, A, between f(X)= X over [0,1] and the x-axis

can be approximated by the rectangles in dashed lines or dotted lines. The area of
the rectangles in dotted lines is



OENOERHE
Swin =| 7| 7| T <]
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while the area of the rectangles in dashed lines is

GEROER
Srrax = = | = =
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11 41 9 1 16
=
16 4 16 4 16 4 1
_15

32

Thus,

0.22zl< A<Ez0.47
32 32 '

In the above approximation, the interval [0,1] is divided into subintervals of

equal length,

AN AL AL 7

If the interval [0,1] is divided into more subintervals of equal lengths, for

example,



o 3415 2126 3616 4416 961 56 961 ¢ 741 4

then the area A can be approximated by similar rectangles in dashed lines or
dotted lines. The area of the rectangles in dotted lines is

DEROESSOE

Sm’n: ] =4+ = =4t =] =

8/ 8 \8) 8 8) 8
3
128

while the area of the rectangles in dashed lines is

)50 () 506 50
Srmx == . 24| 2| 24| = =4 =] .=
8) 8 \8/) 8 8/ 8 \8) 8
s
- 128

Thus,

0.27z£< A<£z0.40_

128 128

A more accurate approximation can be obtained. In general, the interval [0,1] is

divided into subintervals with equal length % .



f(x)=x"2

T T T

0 &1yn  Kn

(n-1)/n 1

The area of the rectangles in dotted lines is

F )
Smin: — | —*| | -+
n) n (n) n
P22 4w (n-1)

n3

k2

1 n-1
=
_(n=1)n(2n-1)
i 6n°

while the area of the rectangles in dashed lines is




n
1n
_ = k2
n3kZ:1:
_n(n+1)2n+1)
n3
Thus,
n-1)n(2n-1 nin+1)2n+1
( )6r$ ) _ Nl G)rgs )

As n tends to infinity, by squeezing theorem,

i (n—Yn(2n-1) 1 _ i n(n+1)2n+1)
n—>o0 6n° 3 no= 6n° /
A=Ilm A= 1

N— 3

Note:

In the above approximations, the same result can be obtained as the heights of

the rectangles are replaced by f (Xi* ), where

xf:H+C,O<C<E,i:1,2,...,n.
n n



(L] ff0=D
That is, rather than using n, °or N , the values of the function

evaluating at the inner points of the subintervals are used as the heights of the
rectangles. For example, as using the middle points of these subintervals as the
heights,

. (-1 1 2i—1

X =—+—=——-,1=12,...,n,
n 2N 2N

. (1]2 1 (3)2 1 (2n—1j2 1
= approximatedarea=| — | -—+ Pt "

on) n \2n) n 2n
2n-1 ) n-1 )
PP 4r(2n-1f ;k _H(Zk)
4n® 4n®
_4n*-1
 12n?

Thus, as n tends to infinity, the approximated area tends to % .

Definition 3 (Riemann sum and regular partition):

Let

A=Xy <X <Xy <+ <X 4, <X, =D,

Let Xi _ Xi—l - AXN i :1, 2,-- - n,The Riemann sum is

2 f<Xi*)AXi’ X; € [Xi—l’ Xi]_

As



the partition is regular.

Definition 4 (the definite integral):

Let T be defined on [a,b].Then,

Tf(x)dx: im > 1 )

whenever the limit exists.

Note:

f (x)dx = fim Zf( )Ax—llme( ) 2 =22

AX—04 n—oo 4 n

D C———

Theorem 5:

f is continuous on [a,b],then f isintegrable on [a,b].That is,

b
I f(X)dX exists.

Note:

fis continuous, then



f(x)dx = fim Zf( )Ax—llme( )

AX—04 n—oo 4

D C——— T

Theorem 6:

Let C be a constant. Then,

Tcdx =cb-a)

Definition 5:

For any real number a,

f (x)dx = 0.

QD ey



Definition 6:

b
If a<b and I f (x)ox exists, then
a

Example 2:

(.2 (oo —1
dex:—lxdx=?_

1

Definition 7 (area):

The area bounded by the function Y = f(X), is denoted by A: and is defined by
the formula

A = ?| f (x)dx.




Properties of Definite Integral:

Theorem 7:

If T is continuous on [a, b] and if a<C <D, then f isintegrable on [a, C]
and on [C, b], and

T f(x)dx = j f(x)dx + j). f (x)dx.

Theorem 8:

fis integrable on [a,b] and if K is any constant, then Kf is integrable on
[a, b], and

b

[t (x)ax = ki f (x)dx.

a

Theorem 9:

If the function f and § are both integrable on [a,b], then f+0 is
integrable on [a,b],and

b b

[ (x)+ g(x)ldx = j f(x)dx + j g(x)dx.

a

D ey T

Theorem 10:

If f isintegrable on [a,b] and T >0 there, then

j).f(X)dXZO.



Theorem 11:

If the function T and J are both integrable on [a,b] and f(X)ﬁ g(X), then

f(x)dx < i g(x)dx

m'—.U

Theorem 12:

If f isintegrable on [a,b] and M< f <M then

m(b— asif ~a)

[justifications of theorem 7:]

x o

d C
Xo X1 Xk Xk+1 Xn-1
Since



!fx x=_lim Zf( Ay = lim {Zk:f(xi*)AxiJr Zn:f(x;")Axi

max Ax; —0 4 max Ax; =0 1 i
n

= lim Zf( Ax + lim ()Ax

max Ax; -0 4 max AX; —>0

:jf dx+_[

[justifications of theorem 8:]

kj X)dx =k _lim Zf( Ax = lim sz( “Jx

max Ax; —0 £ max Ax;—0

= lim Zkf( ‘Jax

max Ax; —0 4

- j kf (x)dx

[justifications of theorem 9:]

Since T and g are both integrable, then

i £ (X)dx = mligrxjﬁoiz: f(x; Jax,
and

ig( Jdx = _lim Zg( .

max Ax; —0 4



j:f dx+j X = lim Zf( ax, + i Zg( A

=m"ggéo{if( s Sale
- Jin St ol o

naxAx—>0
i=1

[justifications of theorem 10:]

Since

f(xi*)z 0,Ax>0 = Zn: f(xi”‘)Axi >0, VX;,

i=1

jf( X)dx = _lim Zf( ‘x>0,

max Ax;—0 <

[justifications of theorem 11:]
Since h(X): g(x)— f(X)Z 0 and
h(x)=g(x)- f(x)=g(x)+(-1- £ (x))

is integrable (by theorems 8 and 9), then

h(x 0 (by theorem 10),

QD ey T



Thus,

b by theorem9 b

Ih(x)dx = I [g(x)+(=1- f(x))jdx = I g(x)dx + T(—l- f (x))dx

a

by theorem8

- jg(x)dx+(_1).f £ (x)dx

_[g(x)dx j f (x)dx

a a

[justifications of theorem 12:]

Let g(x)= M and thus g(x) is integrable. Then, f(X)S g(x). By theorems 11
and 6,

b b b
I f(x)dxsjg(x)dx:Ide: M(b-a)
Similarly,
b
If dx>jmdx m(b-a)

4.3 The Fundamental Theorem of Calculus

Theorem 13 (Rolle’s theorem):

let f be continuous on [a,b] and differentiable on (a,b). If

f(a)= f(b)=0, then there exists at least one number ¢ in (a, b) at which
f'(c)=0.



[Intuitions:]

(1)

(2)

)

f(x)




(3)

f(x)
o
1

If (3) (figure), T I(X)Z 0 in (a, b). Thus, f I(C)Z 0,Vce (a, b). If

(1) or (2), suppose f takes on some positive values in (a, b). Intuitive, there is a

number X, in [a, b], such that f(X1)= M >0, where M is the maximum value
of f(X) in [a,b].Then, f'(Xl) 0,



Theorem 14 (mean-value theorem):

let f be continuous on [a, b] and differentiable on (a, b).
f (a) = f (b) =0, then there exists at least one number cin (a, b) at which

f(b)-f(a)=f'(ckb-a).

[justifications of theorem 14:]

Then, let g(x)= f(X)— h(X). Since

9(a)= f(a)-h(a)=0,9(b)= f(b)-h(b)= f(b)- f(b)=0,

by Rolle’s theorem, there is a number ¢ such that

The fundamental theorem of calculus is the core of calculus. The following
example provides the intuition of the theorem.



Motivating Example (continue):

The area, A, bounded by f(X)=X2 over [0,1] is % Note that the
antiderivative of f is F(X)=X%+C and FI(X)Z f(X).As the interval [0,1]

is divided into subintervals with equal length /4, the approximated area is

_l[f(x)sz(xl”‘)2 -l+(x;‘)2£+---+(x:)2-£, X e[ﬂl}

0

By mean-value theorem,

-1

where Ci e(

n ’Hj .As Xi is chosen such that Xi =C;, the approximated

area is



z(xl)z-%+(x;)z-%+---+(xn)z %
] L e
2

Thus, it is nature to ask if in general for a function f with antiderivative F

Tf Jdx =F (b)— F(a).

Theorem 15 (fundamental theorem of calculus):

Let T be continuous on [a,b]. If F is any antiderivative of f on [a,b],then

Tf Jdx =F (b)— F(a).

[justifications of theorem 15:]

b
Since T be continuous on [a, b], then j f(X)dX exists. Let

a

A=Xy <X <Xy <+ <X 4, <X, =D,



Then, by mean value theorem,

F(b)-F(a)=Flx,)-Flx,)

:[F(Xl)_F(XO)]'l'[F(XZ)_F(Xl)]'l'"""[l:(x - F(an)HF( )= %)
F'(xl"Xxl—xo)+F'(x;Xx2—x1 ( Xx ~X )
(

F(x' )Axi
f (xi* )Axi

where AX; =X, — X ; and Xi* € (X| 1 |) Thus,

)
)

i=1

F(b)-F(a)= tm [F(b)-F(a)= lm {Zf( )Ax} [ £ (x)x

max Ax; =0 max Ax; —0 i

Example 3:

3
Calculate _[X dx.
1

[solutions:]
4
. o s F(x)=2+c
Since the antiderivative of X~ is X)= Z T C | by the fundamental theorem of
calculus,

4

ix3dx: F(B)—F(l):{3—4+c}—{%+c}=821.



Note:

For convenience, the notation,

is used.

Theorem 16 (second fundamental theorem of calculus):

If f be continuous on [a,b], then

X
= [ f(t)dt
a
is continuous, differentiable on (a, b), and for every x in (a, b),

G (x)= f(x)

[Intuition of theorem 16:]

Suppose f(X) is positive. The area bounded by f(X) over [a, X] is
X
AL = [ f(x)dx = G(x
a

Then,

X+AX X
6 ()= tm, S gy AR

X+AX
_lim A
AX—0 AX




In the above figure,

By squeezing theorem, since

lim f(x+Ax)= f(x)=lim f(x)

AX—0 AX—0

X+AX
G'()= lim 2= (x).

4.4 Integration by Substitution and Differentials

| #lg(lg' (x)dx = F[g(x)]+c,

where F is an antiderivative of f and cis some constant.

[justifications of theorem 17:]

9FLOO_ £ g o))y ()= Lol (x)

dx

Example 4:

Calculate _[(XZ + 1)2 2xdXx



[solutions:]

Let

f(x)=x%, g(x)=x* +1= g'(x) = 2x, F(x)= X4 , £ (g(x)) = (x* +1.

By theorem 17,

I(x2 +1f 2xdx = [ o)’ (x)dx =F[g(x)]+c =

Note:

For the purpose of computations, the following procedure can be used to obtain
the integral :

o= (s (00= 8 qu =g (0)= g oo

:>j f[g(x)l (x)ax =I f(u)du=F(u)+c=F[g(x)]+c

Example 4 (continue):

Calculate .[(XZ + 1)2 2xdXx .

[solutions:]

Let



[ (2 +1f 2xdx = [ t[g(x)]g’ (x)ex =] F[g(x)ldg(x)= [ f (u)du

=Iu2du:§+c M

Theorem 18:

If the function u=g(x) has a continuous derivative on [a,b], and f s

continuous on the range of g(x),

b | g(b)
[ flg()lg’()dx = [ f(u)du.
a g(a)
[Intuition of theorem 18:]
A T tla(ll (x)ox
f(a(x))g'(x)
//
f(a(x)g'(x)
AX rome A >




N ! )f(u)du
f(g(x))
//
f(g(x))
g (X) AXi g(a) T g(b) >
XoH

Let
A=Xy <X <Xy <+ <X, <X, =D

and

9(a)=x <x =9(x)<x =g(x) < <x,=9(x.)<x=9().

Note that

A =X =X, =0 = A =X - X, = g(xi)_ g(xi—l)z 0

(Xi )— (Xi—l) ' '
g Axg ~g'(x,)=g'(x)

= 00~ gl0x.1)~ g )ax
= AX" = g'(x, )AX,

p—

Then,



[9(x o (x )Jax, + flg(x; )Jg'(x, Jax, -+ Fg(x, g (x, Jax,
[g (Xl)]Axl* + f[g (Xz )]AX; Tt f[g (Xn )]AX:
*(xl*)Axl* + f(x;‘)Ax; +oet f(x: )Ax:

Q
—_— 3

—h
—_

[
~—~

o

[

Example 5:

1

Calculate I(Xz + 1)2 2xdx.
0

[solutions:]

Let

By theorem 18,

L ) 1 | 9(1) 2 Ik 2
I(xz +1) 2xdx = flg(x)lg (x)dx = | f(u)du = [udu==-
0 0 g(0) 1 3 1
2° 1
"3 3



Note:

For the purpose of computations, the following procedure can be used to obtain
the definite integral :

1. The indefinite integral was computed first,

- 900 00= 8 = 0w =g ()= g
'[f ()l (x) I (u)du=F(u)+c

2. Evaluate F(szgb)) = F[g(b)]— F[g(a)]_

a

Example 5 (continue):

1. The indefinite integral is
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